Metamath Proof Explorer


Theorem ioondisj1

Description: A condition for two open intervals not to be disjoint. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion ioondisj1 A * B * A < B C * D * C < D A C C < B A B C D

Proof

Step Hyp Ref Expression
1 simpll1 A * B * A < B C * D * C < D A C C < B A *
2 simpll2 A * B * A < B C * D * C < D A C C < B B *
3 simplr1 A * B * A < B C * D * C < D A C C < B C *
4 simplr2 A * B * A < B C * D * C < D A C C < B D *
5 iooin A * B * C * D * A B C D = if A C C A if B D B D
6 1 2 3 4 5 syl22anc A * B * A < B C * D * C < D A C C < B A B C D = if A C C A if B D B D
7 simprl A * B * A < B C * D * C < D A C C < B A C
8 7 iftrued A * B * A < B C * D * C < D A C C < B if A C C A = C
9 8 oveq1d A * B * A < B C * D * C < D A C C < B if A C C A if B D B D = C if B D B D
10 simprr A * B * A < B C * D * C < D A C C < B C < B
11 simplr3 A * B * A < B C * D * C < D A C C < B C < D
12 10 11 jca A * B * A < B C * D * C < D A C C < B C < B C < D
13 xrltmin C * B * D * C < if B D B D C < B C < D
14 3 2 4 13 syl3anc A * B * A < B C * D * C < D A C C < B C < if B D B D C < B C < D
15 12 14 mpbird A * B * A < B C * D * C < D A C C < B C < if B D B D
16 2 4 ifcld A * B * A < B C * D * C < D A C C < B if B D B D *
17 ioon0 C * if B D B D * C if B D B D C < if B D B D
18 3 16 17 syl2anc A * B * A < B C * D * C < D A C C < B C if B D B D C < if B D B D
19 15 18 mpbird A * B * A < B C * D * C < D A C C < B C if B D B D
20 9 19 eqnetrd A * B * A < B C * D * C < D A C C < B if A C C A if B D B D
21 6 20 eqnetrd A * B * A < B C * D * C < D A C C < B A B C D