Metamath Proof Explorer


Theorem ip0i

Description: A slight variant of Equation 6.46 of Ponnusamy p. 362, where J is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ip1i.1 X = BaseSet U
ip1i.2 G = + v U
ip1i.4 S = 𝑠OLD U
ip1i.7 P = 𝑖OLD U
ip1i.9 U CPreHil OLD
ip1i.a A X
ip1i.b B X
ip1i.c C X
ip1i.6 N = norm CV U
ip0i.j J
Assertion ip0i N A G B G J S C 2 N A G B G -J S C 2 + N A G -1 S B G J S C 2 - N A G -1 S B G -J S C 2 = 2 N A G J S C 2 N A G -J S C 2

Proof

Step Hyp Ref Expression
1 ip1i.1 X = BaseSet U
2 ip1i.2 G = + v U
3 ip1i.4 S = 𝑠OLD U
4 ip1i.7 P = 𝑖OLD U
5 ip1i.9 U CPreHil OLD
6 ip1i.a A X
7 ip1i.b B X
8 ip1i.c C X
9 ip1i.6 N = norm CV U
10 ip0i.j J
11 2cn 2
12 5 phnvi U NrmCVec
13 1 3 nvscl U NrmCVec J C X J S C X
14 12 10 8 13 mp3an J S C X
15 1 2 nvgcl U NrmCVec A X J S C X A G J S C X
16 12 6 14 15 mp3an A G J S C X
17 1 9 12 16 nvcli N A G J S C
18 17 recni N A G J S C
19 18 sqcli N A G J S C 2
20 10 negcli J
21 1 3 nvscl U NrmCVec J C X -J S C X
22 12 20 8 21 mp3an -J S C X
23 1 2 nvgcl U NrmCVec A X -J S C X A G -J S C X
24 12 6 22 23 mp3an A G -J S C X
25 1 9 12 24 nvcli N A G -J S C
26 25 recni N A G -J S C
27 26 sqcli N A G -J S C 2
28 11 19 27 subdii 2 N A G J S C 2 N A G -J S C 2 = 2 N A G J S C 2 2 N A G -J S C 2
29 11 19 mulcli 2 N A G J S C 2
30 11 27 mulcli 2 N A G -J S C 2
31 1 9 12 7 nvcli N B
32 31 recni N B
33 32 sqcli N B 2
34 11 33 mulcli 2 N B 2
35 pnpcan2 2 N A G J S C 2 2 N A G -J S C 2 2 N B 2 2 N A G J S C 2 + 2 N B 2 - 2 N A G -J S C 2 + 2 N B 2 = 2 N A G J S C 2 2 N A G -J S C 2
36 29 30 34 35 mp3an 2 N A G J S C 2 + 2 N B 2 - 2 N A G -J S C 2 + 2 N B 2 = 2 N A G J S C 2 2 N A G -J S C 2
37 28 36 eqtr4i 2 N A G J S C 2 N A G -J S C 2 = 2 N A G J S C 2 + 2 N B 2 - 2 N A G -J S C 2 + 2 N B 2
38 eqid 1 st U = 1 st U
39 38 nvvc U NrmCVec 1 st U CVec OLD
40 2 vafval G = 1 st 1 st U
41 40 vcablo 1 st U CVec OLD G AbelOp
42 12 39 41 mp2b G AbelOp
43 6 7 14 3pm3.2i A X B X J S C X
44 1 2 bafval X = ran G
45 44 ablo32 G AbelOp A X B X J S C X A G B G J S C = A G J S C G B
46 42 43 45 mp2an A G B G J S C = A G J S C G B
47 46 fveq2i N A G B G J S C = N A G J S C G B
48 47 oveq1i N A G B G J S C 2 = N A G J S C G B 2
49 neg1cn 1
50 1 3 nvscl U NrmCVec 1 B X -1 S B X
51 12 49 7 50 mp3an -1 S B X
52 6 51 14 3pm3.2i A X -1 S B X J S C X
53 44 ablo32 G AbelOp A X -1 S B X J S C X A G -1 S B G J S C = A G J S C G -1 S B
54 42 52 53 mp2an A G -1 S B G J S C = A G J S C G -1 S B
55 54 fveq2i N A G -1 S B G J S C = N A G J S C G -1 S B
56 55 oveq1i N A G -1 S B G J S C 2 = N A G J S C G -1 S B 2
57 48 56 oveq12i N A G B G J S C 2 + N A G -1 S B G J S C 2 = N A G J S C G B 2 + N A G J S C G -1 S B 2
58 1 2 3 9 phpar U CPreHil OLD A G J S C X B X N A G J S C G B 2 + N A G J S C G -1 S B 2 = 2 N A G J S C 2 + N B 2
59 5 16 7 58 mp3an N A G J S C G B 2 + N A G J S C G -1 S B 2 = 2 N A G J S C 2 + N B 2
60 11 19 33 adddii 2 N A G J S C 2 + N B 2 = 2 N A G J S C 2 + 2 N B 2
61 57 59 60 3eqtri N A G B G J S C 2 + N A G -1 S B G J S C 2 = 2 N A G J S C 2 + 2 N B 2
62 6 7 22 3pm3.2i A X B X -J S C X
63 44 ablo32 G AbelOp A X B X -J S C X A G B G -J S C = A G -J S C G B
64 42 62 63 mp2an A G B G -J S C = A G -J S C G B
65 64 fveq2i N A G B G -J S C = N A G -J S C G B
66 65 oveq1i N A G B G -J S C 2 = N A G -J S C G B 2
67 6 51 22 3pm3.2i A X -1 S B X -J S C X
68 44 ablo32 G AbelOp A X -1 S B X -J S C X A G -1 S B G -J S C = A G -J S C G -1 S B
69 42 67 68 mp2an A G -1 S B G -J S C = A G -J S C G -1 S B
70 69 fveq2i N A G -1 S B G -J S C = N A G -J S C G -1 S B
71 70 oveq1i N A G -1 S B G -J S C 2 = N A G -J S C G -1 S B 2
72 66 71 oveq12i N A G B G -J S C 2 + N A G -1 S B G -J S C 2 = N A G -J S C G B 2 + N A G -J S C G -1 S B 2
73 1 2 3 9 phpar U CPreHil OLD A G -J S C X B X N A G -J S C G B 2 + N A G -J S C G -1 S B 2 = 2 N A G -J S C 2 + N B 2
74 5 24 7 73 mp3an N A G -J S C G B 2 + N A G -J S C G -1 S B 2 = 2 N A G -J S C 2 + N B 2
75 11 27 33 adddii 2 N A G -J S C 2 + N B 2 = 2 N A G -J S C 2 + 2 N B 2
76 72 74 75 3eqtri N A G B G -J S C 2 + N A G -1 S B G -J S C 2 = 2 N A G -J S C 2 + 2 N B 2
77 61 76 oveq12i N A G B G J S C 2 + N A G -1 S B G J S C 2 - N A G B G -J S C 2 + N A G -1 S B G -J S C 2 = 2 N A G J S C 2 + 2 N B 2 - 2 N A G -J S C 2 + 2 N B 2
78 1 2 nvgcl U NrmCVec A X B X A G B X
79 12 6 7 78 mp3an A G B X
80 1 2 nvgcl U NrmCVec A G B X J S C X A G B G J S C X
81 12 79 14 80 mp3an A G B G J S C X
82 1 9 12 81 nvcli N A G B G J S C
83 82 recni N A G B G J S C
84 83 sqcli N A G B G J S C 2
85 1 2 nvgcl U NrmCVec A X -1 S B X A G -1 S B X
86 12 6 51 85 mp3an A G -1 S B X
87 1 2 nvgcl U NrmCVec A G -1 S B X J S C X A G -1 S B G J S C X
88 12 86 14 87 mp3an A G -1 S B G J S C X
89 1 9 12 88 nvcli N A G -1 S B G J S C
90 89 recni N A G -1 S B G J S C
91 90 sqcli N A G -1 S B G J S C 2
92 1 2 nvgcl U NrmCVec A G B X -J S C X A G B G -J S C X
93 12 79 22 92 mp3an A G B G -J S C X
94 1 9 12 93 nvcli N A G B G -J S C
95 94 recni N A G B G -J S C
96 95 sqcli N A G B G -J S C 2
97 1 2 nvgcl U NrmCVec A G -1 S B X -J S C X A G -1 S B G -J S C X
98 12 86 22 97 mp3an A G -1 S B G -J S C X
99 1 9 12 98 nvcli N A G -1 S B G -J S C
100 99 recni N A G -1 S B G -J S C
101 100 sqcli N A G -1 S B G -J S C 2
102 84 91 96 101 addsub4i N A G B G J S C 2 + N A G -1 S B G J S C 2 - N A G B G -J S C 2 + N A G -1 S B G -J S C 2 = N A G B G J S C 2 N A G B G -J S C 2 + N A G -1 S B G J S C 2 - N A G -1 S B G -J S C 2
103 37 77 102 3eqtr2ri N A G B G J S C 2 N A G B G -J S C 2 + N A G -1 S B G J S C 2 - N A G -1 S B G -J S C 2 = 2 N A G J S C 2 N A G -J S C 2