Metamath Proof Explorer


Theorem ip0l

Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ip0l.z Z=0F
ip0l.o 0˙=0W
Assertion ip0l WPreHilAV0˙,˙A=Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ip0l.z Z=0F
5 ip0l.o 0˙=0W
6 phllmod WPreHilWLMod
7 lmodgrp WLModWGrp
8 3 5 grpidcl WGrp0˙V
9 6 7 8 3syl WPreHil0˙V
10 9 adantr WPreHilAV0˙V
11 oveq1 x=0˙x,˙A=0˙,˙A
12 eqid xVx,˙A=xVx,˙A
13 ovex 0˙,˙AV
14 11 12 13 fvmpt 0˙VxVx,˙A0˙=0˙,˙A
15 10 14 syl WPreHilAVxVx,˙A0˙=0˙,˙A
16 1 2 3 12 phllmhm WPreHilAVxVx,˙AWLMHomringLModF
17 lmghm xVx,˙AWLMHomringLModFxVx,˙AWGrpHomringLModF
18 rlm0 0F=0ringLModF
19 4 18 eqtri Z=0ringLModF
20 5 19 ghmid xVx,˙AWGrpHomringLModFxVx,˙A0˙=Z
21 16 17 20 3syl WPreHilAVxVx,˙A0˙=Z
22 15 21 eqtr3d WPreHilAV0˙,˙A=Z