Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ip0l.z | |
||
ip0l.o | |
||
Assertion | ip0l | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ip0l.z | |
|
5 | ip0l.o | |
|
6 | phllmod | |
|
7 | lmodgrp | |
|
8 | 3 5 | grpidcl | |
9 | 6 7 8 | 3syl | |
10 | 9 | adantr | |
11 | oveq1 | |
|
12 | eqid | |
|
13 | ovex | |
|
14 | 11 12 13 | fvmpt | |
15 | 10 14 | syl | |
16 | 1 2 3 12 | phllmhm | |
17 | lmghm | |
|
18 | rlm0 | |
|
19 | 4 18 | eqtri | |
20 | 5 19 | ghmid | |
21 | 16 17 20 | 3syl | |
22 | 15 21 | eqtr3d | |