Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | phlsrng.f | |
|
phllmhm.h | |
||
phllmhm.v | |
||
ip0l.z | |
||
ip0l.o | |
||
Assertion | ip0r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | |
|
2 | phllmhm.h | |
|
3 | phllmhm.v | |
|
4 | ip0l.z | |
|
5 | ip0l.o | |
|
6 | 1 2 3 4 5 | ip0l | |
7 | 6 | fveq2d | |
8 | phllmod | |
|
9 | 8 | adantr | |
10 | 3 5 | lmod0vcl | |
11 | 9 10 | syl | |
12 | eqid | |
|
13 | 1 2 3 12 | ipcj | |
14 | 13 | 3expa | |
15 | 14 | an32s | |
16 | 11 15 | mpdan | |
17 | 1 | phlsrng | |
18 | 17 | adantr | |
19 | 12 4 | srng0 | |
20 | 18 19 | syl | |
21 | 7 16 20 | 3eqtr3d | |