Metamath Proof Explorer


Theorem ip0r

Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ip0l.z Z=0F
ip0l.o 0˙=0W
Assertion ip0r WPreHilAVA,˙0˙=Z

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ip0l.z Z=0F
5 ip0l.o 0˙=0W
6 1 2 3 4 5 ip0l WPreHilAV0˙,˙A=Z
7 6 fveq2d WPreHilAV0˙,˙A*F=Z*F
8 phllmod WPreHilWLMod
9 8 adantr WPreHilAVWLMod
10 3 5 lmod0vcl WLMod0˙V
11 9 10 syl WPreHilAV0˙V
12 eqid *F=*F
13 1 2 3 12 ipcj WPreHil0˙VAV0˙,˙A*F=A,˙0˙
14 13 3expa WPreHil0˙VAV0˙,˙A*F=A,˙0˙
15 14 an32s WPreHilAV0˙V0˙,˙A*F=A,˙0˙
16 11 15 mpdan WPreHilAV0˙,˙A*F=A,˙0˙
17 1 phlsrng WPreHilF*-Ring
18 17 adantr WPreHilAVF*-Ring
19 12 4 srng0 F*-RingZ*F=Z
20 18 19 syl WPreHilAVZ*F=Z
21 7 16 20 3eqtr3d WPreHilAVA,˙0˙=Z