Metamath Proof Explorer


Theorem ip2dii

Description: Inner product of two sums. (Contributed by NM, 17-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses ip2dii.1 X = BaseSet U
ip2dii.2 G = + v U
ip2dii.7 P = 𝑖OLD U
ip2dii.u U CPreHil OLD
ip2dii.a A X
ip2dii.b B X
ip2dii.c C X
ip2dii.d D X
Assertion ip2dii A G B P C G D = A P C + B P D + A P D + B P C

Proof

Step Hyp Ref Expression
1 ip2dii.1 X = BaseSet U
2 ip2dii.2 G = + v U
3 ip2dii.7 P = 𝑖OLD U
4 ip2dii.u U CPreHil OLD
5 ip2dii.a A X
6 ip2dii.b B X
7 ip2dii.c C X
8 ip2dii.d D X
9 5 7 8 3pm3.2i A X C X D X
10 1 2 3 dipdi U CPreHil OLD A X C X D X A P C G D = A P C + A P D
11 4 9 10 mp2an A P C G D = A P C + A P D
12 6 7 8 3pm3.2i B X C X D X
13 1 2 3 dipdi U CPreHil OLD B X C X D X B P C G D = B P C + B P D
14 4 12 13 mp2an B P C G D = B P C + B P D
15 11 14 oveq12i A P C G D + B P C G D = A P C + A P D + B P C + B P D
16 4 phnvi U NrmCVec
17 1 2 nvgcl U NrmCVec C X D X C G D X
18 16 7 8 17 mp3an C G D X
19 5 6 18 3pm3.2i A X B X C G D X
20 1 2 3 dipdir U CPreHil OLD A X B X C G D X A G B P C G D = A P C G D + B P C G D
21 4 19 20 mp2an A G B P C G D = A P C G D + B P C G D
22 1 3 dipcl U NrmCVec A X C X A P C
23 16 5 7 22 mp3an A P C
24 1 3 dipcl U NrmCVec B X D X B P D
25 16 6 8 24 mp3an B P D
26 1 3 dipcl U NrmCVec A X D X A P D
27 16 5 8 26 mp3an A P D
28 1 3 dipcl U NrmCVec B X C X B P C
29 16 6 7 28 mp3an B P C
30 23 25 27 29 add42i A P C + B P D + A P D + B P C = A P C + A P D + B P C + B P D
31 15 21 30 3eqtr4i A G B P C G D = A P C + B P D + A P D + B P C