| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phlsrng.f |  | 
						
							| 2 |  | phllmhm.h |  | 
						
							| 3 |  | phllmhm.v |  | 
						
							| 4 |  | ipdir.g |  | 
						
							| 5 |  | ipdir.p |  | 
						
							| 6 |  | simpl |  | 
						
							| 7 |  | simpr2 |  | 
						
							| 8 |  | simpr3 |  | 
						
							| 9 |  | simpr1 |  | 
						
							| 10 | 1 2 3 4 5 | ipdir |  | 
						
							| 11 | 6 7 8 9 10 | syl13anc |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 1 | phlsrng |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 1 2 3 15 | ipcl |  | 
						
							| 17 | 6 7 9 16 | syl3anc |  | 
						
							| 18 | 1 2 3 15 | ipcl |  | 
						
							| 19 | 6 8 9 18 | syl3anc |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 15 5 | srngadd |  | 
						
							| 22 | 14 17 19 21 | syl3anc |  | 
						
							| 23 | 12 22 | eqtrd |  | 
						
							| 24 |  | phllmod |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 3 4 | lmodvacl |  | 
						
							| 27 | 25 7 8 26 | syl3anc |  | 
						
							| 28 | 1 2 3 20 | ipcj |  | 
						
							| 29 | 6 27 9 28 | syl3anc |  | 
						
							| 30 | 1 2 3 20 | ipcj |  | 
						
							| 31 | 6 7 9 30 | syl3anc |  | 
						
							| 32 | 1 2 3 20 | ipcj |  | 
						
							| 33 | 6 8 9 32 | syl3anc |  | 
						
							| 34 | 31 33 | oveq12d |  | 
						
							| 35 | 23 29 34 | 3eqtr3d |  |