Metamath Proof Explorer


Theorem ipdi

Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses phlsrng.f F=ScalarW
phllmhm.h ,˙=𝑖W
phllmhm.v V=BaseW
ipdir.g +˙=+W
ipdir.p ˙=+F
Assertion ipdi WPreHilAVBVCVA,˙B+˙C=A,˙B˙A,˙C

Proof

Step Hyp Ref Expression
1 phlsrng.f F=ScalarW
2 phllmhm.h ,˙=𝑖W
3 phllmhm.v V=BaseW
4 ipdir.g +˙=+W
5 ipdir.p ˙=+F
6 simpl WPreHilAVBVCVWPreHil
7 simpr2 WPreHilAVBVCVBV
8 simpr3 WPreHilAVBVCVCV
9 simpr1 WPreHilAVBVCVAV
10 1 2 3 4 5 ipdir WPreHilBVCVAVB+˙C,˙A=B,˙A˙C,˙A
11 6 7 8 9 10 syl13anc WPreHilAVBVCVB+˙C,˙A=B,˙A˙C,˙A
12 11 fveq2d WPreHilAVBVCVB+˙C,˙A*F=B,˙A˙C,˙A*F
13 1 phlsrng WPreHilF*-Ring
14 13 adantr WPreHilAVBVCVF*-Ring
15 eqid BaseF=BaseF
16 1 2 3 15 ipcl WPreHilBVAVB,˙ABaseF
17 6 7 9 16 syl3anc WPreHilAVBVCVB,˙ABaseF
18 1 2 3 15 ipcl WPreHilCVAVC,˙ABaseF
19 6 8 9 18 syl3anc WPreHilAVBVCVC,˙ABaseF
20 eqid *F=*F
21 20 15 5 srngadd F*-RingB,˙ABaseFC,˙ABaseFB,˙A˙C,˙A*F=B,˙A*F˙C,˙A*F
22 14 17 19 21 syl3anc WPreHilAVBVCVB,˙A˙C,˙A*F=B,˙A*F˙C,˙A*F
23 12 22 eqtrd WPreHilAVBVCVB+˙C,˙A*F=B,˙A*F˙C,˙A*F
24 phllmod WPreHilWLMod
25 24 adantr WPreHilAVBVCVWLMod
26 3 4 lmodvacl WLModBVCVB+˙CV
27 25 7 8 26 syl3anc WPreHilAVBVCVB+˙CV
28 1 2 3 20 ipcj WPreHilB+˙CVAVB+˙C,˙A*F=A,˙B+˙C
29 6 27 9 28 syl3anc WPreHilAVBVCVB+˙C,˙A*F=A,˙B+˙C
30 1 2 3 20 ipcj WPreHilBVAVB,˙A*F=A,˙B
31 6 7 9 30 syl3anc WPreHilAVBVCVB,˙A*F=A,˙B
32 1 2 3 20 ipcj WPreHilCVAVC,˙A*F=A,˙C
33 6 8 9 32 syl3anc WPreHilAVBVCVC,˙A*F=A,˙C
34 31 33 oveq12d WPreHilAVBVCVB,˙A*F˙C,˙A*F=A,˙B˙A,˙C
35 23 29 34 3eqtr3d WPreHilAVBVCVA,˙B+˙C=A,˙B˙A,˙C