Metamath Proof Explorer


Theorem iprodclim

Description: An infinite product equals the value its sequence converges to. (Contributed by Scott Fenton, 18-Dec-2017)

Ref Expression
Hypotheses iprodclim.1 Z=M
iprodclim.2 φM
iprodclim.3 φnZyy0seqn×Fy
iprodclim.4 φkZFk=A
iprodclim.5 φkZA
iprodclim.6 φseqM×FB
Assertion iprodclim φkZA=B

Proof

Step Hyp Ref Expression
1 iprodclim.1 Z=M
2 iprodclim.2 φM
3 iprodclim.3 φnZyy0seqn×Fy
4 iprodclim.4 φkZFk=A
5 iprodclim.5 φkZA
6 iprodclim.6 φseqM×FB
7 1 2 3 4 5 iprod φkZA=seqM×F
8 fclim :dom
9 ffun :domFun
10 8 9 ax-mp Fun
11 funbrfv FunseqM×FBseqM×F=B
12 10 6 11 mpsyl φseqM×F=B
13 7 12 eqtrd φkZA=B