Metamath Proof Explorer


Theorem ipval

Description: Value of the inner product. The definition is meaningful for normed complex vector spaces that are also inner product spaces, i.e. satisfy the parallelogram law, although for convenience we define it for any normed complex vector space. The vector (group) addition operation is G , the scalar product is S , the norm is N , and the set of vectors is X . Equation 6.45 of Ponnusamy p. 361. (Contributed by NM, 31-Jan-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dipfval.1 X=BaseSetU
dipfval.2 G=+vU
dipfval.4 S=𝑠OLDU
dipfval.6 N=normCVU
dipfval.7 P=𝑖OLDU
Assertion ipval UNrmCVecAXBXAPB=k=14ikNAGikSB24

Proof

Step Hyp Ref Expression
1 dipfval.1 X=BaseSetU
2 dipfval.2 G=+vU
3 dipfval.4 S=𝑠OLDU
4 dipfval.6 N=normCVU
5 dipfval.7 P=𝑖OLDU
6 1 2 3 4 5 dipfval UNrmCVecP=xX,yXk=14ikNxGikSy24
7 6 oveqd UNrmCVecAPB=AxX,yXk=14ikNxGikSy24B
8 fvoveq1 x=ANxGikSy=NAGikSy
9 8 oveq1d x=ANxGikSy2=NAGikSy2
10 9 oveq2d x=AikNxGikSy2=ikNAGikSy2
11 10 sumeq2sdv x=Ak=14ikNxGikSy2=k=14ikNAGikSy2
12 11 oveq1d x=Ak=14ikNxGikSy24=k=14ikNAGikSy24
13 oveq2 y=BikSy=ikSB
14 13 oveq2d y=BAGikSy=AGikSB
15 14 fveq2d y=BNAGikSy=NAGikSB
16 15 oveq1d y=BNAGikSy2=NAGikSB2
17 16 oveq2d y=BikNAGikSy2=ikNAGikSB2
18 17 sumeq2sdv y=Bk=14ikNAGikSy2=k=14ikNAGikSB2
19 18 oveq1d y=Bk=14ikNAGikSy24=k=14ikNAGikSB24
20 eqid xX,yXk=14ikNxGikSy24=xX,yXk=14ikNxGikSy24
21 ovex k=14ikNAGikSB24V
22 12 19 20 21 ovmpo AXBXAxX,yXk=14ikNxGikSy24B=k=14ikNAGikSB24
23 7 22 sylan9eq UNrmCVecAXBXAPB=k=14ikNAGikSB24
24 23 3impb UNrmCVecAXBXAPB=k=14ikNAGikSB24