Metamath Proof Explorer


Theorem irngssv

Description: An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025)

Ref Expression
Hypotheses irngval.o O=RevalSub1S
irngval.u U=R𝑠S
irngval.b B=BaseR
irngval.0 0˙=0R
elirng.r φRCRing
elirng.s φSSubRingR
Assertion irngssv φRIntgRingSB

Proof

Step Hyp Ref Expression
1 irngval.o O=RevalSub1S
2 irngval.u U=R𝑠S
3 irngval.b B=BaseR
4 irngval.0 0˙=0R
5 elirng.r φRCRing
6 elirng.s φSSubRingR
7 1 2 3 4 5 6 elirng φxRIntgRingSxBfMonic1pUOfx=0˙
8 simpl xBfMonic1pUOfx=0˙xB
9 7 8 syl6bi φxRIntgRingSxB
10 9 ssrdv φRIntgRingSB