Metamath Proof Explorer


Theorem isbasis2g

Description: Express the predicate "the set B is a basis for a topology". (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion isbasis2g BCBTopBasesxByBzxywBzwwxy

Proof

Step Hyp Ref Expression
1 isbasisg BCBTopBasesxByBxyB𝒫xy
2 dfss3 xyB𝒫xyzxyzB𝒫xy
3 elin wB𝒫xywBw𝒫xy
4 velpw w𝒫xywxy
5 4 anbi2i wBw𝒫xywBwxy
6 3 5 bitri wB𝒫xywBwxy
7 6 anbi2i zwwB𝒫xyzwwBwxy
8 an12 zwwBwxywBzwwxy
9 7 8 bitri zwwB𝒫xywBzwwxy
10 9 exbii wzwwB𝒫xywwBzwwxy
11 eluni zB𝒫xywzwwB𝒫xy
12 df-rex wBzwwxywwBzwwxy
13 10 11 12 3bitr4i zB𝒫xywBzwwxy
14 13 ralbii zxyzB𝒫xyzxywBzwwxy
15 2 14 bitri xyB𝒫xyzxywBzwwxy
16 15 2ralbii xByBxyB𝒫xyxByBzxywBzwwxy
17 1 16 bitrdi BCBTopBasesxByBzxywBzwwxy