Metamath Proof Explorer


Theorem isbnd

Description: The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion isbnd MBndXMMetXxXr+X=xballMr

Proof

Step Hyp Ref Expression
1 elfvex MBndXXV
2 elfvex MMetXXV
3 2 adantr MMetXxXr+X=xballMrXV
4 fveq2 y=XMety=MetX
5 eqeq1 y=Xy=xballmrX=xballmr
6 5 rexbidv y=Xr+y=xballmrr+X=xballmr
7 6 raleqbi1dv y=Xxyr+y=xballmrxXr+X=xballmr
8 4 7 rabeqbidv y=XmMety|xyr+y=xballmr=mMetX|xXr+X=xballmr
9 df-bnd Bnd=yVmMety|xyr+y=xballmr
10 fvex MetXV
11 10 rabex mMetX|xXr+X=xballmrV
12 8 9 11 fvmpt XVBndX=mMetX|xXr+X=xballmr
13 12 eleq2d XVMBndXMmMetX|xXr+X=xballmr
14 fveq2 m=Mballm=ballM
15 14 oveqd m=Mxballmr=xballMr
16 15 eqeq2d m=MX=xballmrX=xballMr
17 16 rexbidv m=Mr+X=xballmrr+X=xballMr
18 17 ralbidv m=MxXr+X=xballmrxXr+X=xballMr
19 18 elrab MmMetX|xXr+X=xballmrMMetXxXr+X=xballMr
20 13 19 bitrdi XVMBndXMMetXxXr+X=xballMr
21 1 3 20 pm5.21nii MBndXMMetXxXr+X=xballMr