Metamath Proof Explorer


Theorem isclwlke

Description: Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 16-Feb-2021)

Ref Expression
Hypotheses isclwlke.v V = Vtx G
isclwlke.i I = iEdg G
Assertion isclwlke G X F ClWalks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F

Proof

Step Hyp Ref Expression
1 isclwlke.v V = Vtx G
2 isclwlke.i I = iEdg G
3 isclwlk F ClWalks G P F Walks G P P 0 = P F
4 1 2 iswlkg G X F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
5 df-3an F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
6 4 5 bitrdi G X F Walks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k
7 6 anbi1d G X F Walks G P P 0 = P F F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F
8 anass F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F
9 7 8 bitrdi G X F Walks G P P 0 = P F F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F
10 3 9 syl5bb G X F ClWalks G P F Word dom I P : 0 F V k 0 ..^ F if- P k = P k + 1 I F k = P k P k P k + 1 I F k P 0 = P F