Description: A metric D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of Kreyszig p. 28. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscmet2.1 | |
|
Assertion | iscmet2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmet2.1 | |
|
2 | cmetmet | |
|
3 | 1 | cmetcau | |
4 | 3 | ex | |
5 | 4 | ssrdv | |
6 | 2 5 | jca | |
7 | ssel2 | |
|
8 | 7 | a1d | |
9 | 8 | ralrimiva | |
10 | 9 | adantl | |
11 | nnuz | |
|
12 | 1zzd | |
|
13 | simpl | |
|
14 | 11 1 12 13 | iscmet3 | |
15 | 10 14 | mpbird | |
16 | 6 15 | impbii | |