Metamath Proof Explorer


Theorem iscmet2

Description: A metric D is complete iff all Cauchy sequences converge to a point in the space. The proof uses countable choice. Part of Definition 1.4-3 of Kreyszig p. 28. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis iscmet2.1 J=MetOpenD
Assertion iscmet2 DCMetXDMetXCauDdomtJ

Proof

Step Hyp Ref Expression
1 iscmet2.1 J=MetOpenD
2 cmetmet DCMetXDMetX
3 1 cmetcau DCMetXfCauDfdomtJ
4 3 ex DCMetXfCauDfdomtJ
5 4 ssrdv DCMetXCauDdomtJ
6 2 5 jca DCMetXDMetXCauDdomtJ
7 ssel2 CauDdomtJfCauDfdomtJ
8 7 a1d CauDdomtJfCauDf:XfdomtJ
9 8 ralrimiva CauDdomtJfCauDf:XfdomtJ
10 9 adantl DMetXCauDdomtJfCauDf:XfdomtJ
11 nnuz =1
12 1zzd DMetXCauDdomtJ1
13 simpl DMetXCauDdomtJDMetX
14 11 1 12 13 iscmet3 DMetXCauDdomtJDCMetXfCauDf:XfdomtJ
15 10 14 mpbird DMetXCauDdomtJDCMetX
16 6 15 impbii DCMetXDMetXCauDdomtJ