Metamath Proof Explorer


Theorem iscref

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis iscref.x X=J
Assertion iscref JCovHasRefAJTopy𝒫JX=yz𝒫JAzRefy

Proof

Step Hyp Ref Expression
1 iscref.x X=J
2 pweq j=J𝒫j=𝒫J
3 unieq j=Jj=J
4 3 1 eqtr4di j=Jj=X
5 4 eqeq1d j=Jj=yX=y
6 2 ineq1d j=J𝒫jA=𝒫JA
7 6 rexeqdv j=Jz𝒫jAzRefyz𝒫JAzRefy
8 5 7 imbi12d j=Jj=yz𝒫jAzRefyX=yz𝒫JAzRefy
9 2 8 raleqbidv j=Jy𝒫jj=yz𝒫jAzRefyy𝒫JX=yz𝒫JAzRefy
10 df-cref CovHasRefA=jTop|y𝒫jj=yz𝒫jAzRefy
11 9 10 elrab2 JCovHasRefAJTopy𝒫JX=yz𝒫JAzRefy