Metamath Proof Explorer


Theorem iscref

Description: The property that every open cover has an A refinement for the topological space J . (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Hypothesis iscref.x X = J
Assertion iscref J CovHasRef A J Top y 𝒫 J X = y z 𝒫 J A z Ref y

Proof

Step Hyp Ref Expression
1 iscref.x X = J
2 pweq j = J 𝒫 j = 𝒫 J
3 unieq j = J j = J
4 3 1 eqtr4di j = J j = X
5 4 eqeq1d j = J j = y X = y
6 2 ineq1d j = J 𝒫 j A = 𝒫 J A
7 6 rexeqdv j = J z 𝒫 j A z Ref y z 𝒫 J A z Ref y
8 5 7 imbi12d j = J j = y z 𝒫 j A z Ref y X = y z 𝒫 J A z Ref y
9 2 8 raleqbidv j = J y 𝒫 j j = y z 𝒫 j A z Ref y y 𝒫 J X = y z 𝒫 J A z Ref y
10 df-cref CovHasRef A = j Top | y 𝒫 j j = y z 𝒫 j A z Ref y
11 9 10 elrab2 J CovHasRef A J Top y 𝒫 J X = y z 𝒫 J A z Ref y