Metamath Proof Explorer


Theorem iscyg3

Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
Assertion iscyg3 GCycGrpGGrpxByBny=n·˙x

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 1 2 iscyg GCycGrpGGrpxBrannn·˙x=B
4 1 2 mulgcl GGrpnxBn·˙xB
5 4 3expa GGrpnxBn·˙xB
6 5 an32s GGrpxBnn·˙xB
7 6 fmpttd GGrpxBnn·˙x:B
8 frn nn·˙x:Brannn·˙xB
9 eqss rannn·˙x=Brannn·˙xBBrannn·˙x
10 9 baib rannn·˙xBrannn·˙x=BBrannn·˙x
11 7 8 10 3syl GGrpxBrannn·˙x=BBrannn·˙x
12 dfss3 Brannn·˙xyByrannn·˙x
13 eqid nn·˙x=nn·˙x
14 ovex n·˙xV
15 13 14 elrnmpti yrannn·˙xny=n·˙x
16 15 ralbii yByrannn·˙xyBny=n·˙x
17 12 16 bitri Brannn·˙xyBny=n·˙x
18 11 17 bitrdi GGrpxBrannn·˙x=ByBny=n·˙x
19 18 rexbidva GGrpxBrannn·˙x=BxByBny=n·˙x
20 19 pm5.32i GGrpxBrannn·˙x=BGGrpxByBny=n·˙x
21 3 20 bitri GCycGrpGGrpxByBny=n·˙x