Metamath Proof Explorer


Theorem isdomn

Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Hypotheses isdomn.b B=BaseR
isdomn.t ·˙=R
isdomn.z 0˙=0R
Assertion isdomn RDomnRNzRingxByBx·˙y=0˙x=0˙y=0˙

Proof

Step Hyp Ref Expression
1 isdomn.b B=BaseR
2 isdomn.t ·˙=R
3 isdomn.z 0˙=0R
4 fvexd r=RBaserV
5 fveq2 r=RBaser=BaseR
6 5 1 eqtr4di r=RBaser=B
7 fvexd r=Rb=B0rV
8 fveq2 r=R0r=0R
9 8 adantr r=Rb=B0r=0R
10 9 3 eqtr4di r=Rb=B0r=0˙
11 simplr r=Rb=Bz=0˙b=B
12 fveq2 r=Rr=R
13 12 2 eqtr4di r=Rr=·˙
14 13 oveqdr r=Rb=Bxry=x·˙y
15 id z=0˙z=0˙
16 14 15 eqeqan12d r=Rb=Bz=0˙xry=zx·˙y=0˙
17 eqeq2 z=0˙x=zx=0˙
18 eqeq2 z=0˙y=zy=0˙
19 17 18 orbi12d z=0˙x=zy=zx=0˙y=0˙
20 19 adantl r=Rb=Bz=0˙x=zy=zx=0˙y=0˙
21 16 20 imbi12d r=Rb=Bz=0˙xry=zx=zy=zx·˙y=0˙x=0˙y=0˙
22 11 21 raleqbidv r=Rb=Bz=0˙ybxry=zx=zy=zyBx·˙y=0˙x=0˙y=0˙
23 11 22 raleqbidv r=Rb=Bz=0˙xbybxry=zx=zy=zxByBx·˙y=0˙x=0˙y=0˙
24 7 10 23 sbcied2 r=Rb=B[˙0r/z]˙xbybxry=zx=zy=zxByBx·˙y=0˙x=0˙y=0˙
25 4 6 24 sbcied2 r=R[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=zxByBx·˙y=0˙x=0˙y=0˙
26 df-domn Domn=rNzRing|[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=z
27 25 26 elrab2 RDomnRNzRingxByBx·˙y=0˙x=0˙y=0˙