Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clim2ser.1 | |
|
iserex.2 | |
||
iserex.3 | |
||
Assertion | iserex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clim2ser.1 | |
|
2 | iserex.2 | |
|
3 | iserex.3 | |
|
4 | seqeq1 | |
|
5 | 4 | eleq1d | |
6 | 5 | bicomd | |
7 | 6 | a1i | |
8 | simpll | |
|
9 | 2 1 | eleqtrdi | |
10 | eluzelz | |
|
11 | 9 10 | syl | |
12 | 11 | zcnd | |
13 | ax-1cn | |
|
14 | npcan | |
|
15 | 12 13 14 | sylancl | |
16 | 15 | seqeq1d | |
17 | 8 16 | syl | |
18 | simplr | |
|
19 | 18 1 | eleqtrrdi | |
20 | 8 3 | sylan | |
21 | simpr | |
|
22 | climdm | |
|
23 | 21 22 | sylib | |
24 | 1 19 20 23 | clim2ser | |
25 | 17 24 | eqbrtrrd | |
26 | climrel | |
|
27 | 26 | releldmi | |
28 | 25 27 | syl | |
29 | simpr | |
|
30 | 29 1 | eleqtrrdi | |
31 | 30 | adantr | |
32 | simpll | |
|
33 | 32 3 | sylan | |
34 | 32 16 | syl | |
35 | simpr | |
|
36 | climdm | |
|
37 | 35 36 | sylib | |
38 | 34 37 | eqbrtrd | |
39 | 1 31 33 38 | clim2ser2 | |
40 | 26 | releldmi | |
41 | 39 40 | syl | |
42 | 28 41 | impbida | |
43 | 42 | ex | |
44 | uzm1 | |
|
45 | 9 44 | syl | |
46 | 7 43 45 | mpjaod | |