Metamath Proof Explorer


Theorem iserex

Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)

Ref Expression
Hypotheses clim2ser.1 Z=M
iserex.2 φNZ
iserex.3 φkZFk
Assertion iserex φseqM+FdomseqN+Fdom

Proof

Step Hyp Ref Expression
1 clim2ser.1 Z=M
2 iserex.2 φNZ
3 iserex.3 φkZFk
4 seqeq1 N=MseqN+F=seqM+F
5 4 eleq1d N=MseqN+FdomseqM+Fdom
6 5 bicomd N=MseqM+FdomseqN+Fdom
7 6 a1i φN=MseqM+FdomseqN+Fdom
8 simpll φN1MseqM+Fdomφ
9 2 1 eleqtrdi φNM
10 eluzelz NMN
11 9 10 syl φN
12 11 zcnd φN
13 ax-1cn 1
14 npcan N1N-1+1=N
15 12 13 14 sylancl φN-1+1=N
16 15 seqeq1d φseqN-1+1+F=seqN+F
17 8 16 syl φN1MseqM+FdomseqN-1+1+F=seqN+F
18 simplr φN1MseqM+FdomN1M
19 18 1 eleqtrrdi φN1MseqM+FdomN1Z
20 8 3 sylan φN1MseqM+FdomkZFk
21 simpr φN1MseqM+FdomseqM+Fdom
22 climdm seqM+FdomseqM+FseqM+F
23 21 22 sylib φN1MseqM+FdomseqM+FseqM+F
24 1 19 20 23 clim2ser φN1MseqM+FdomseqN-1+1+FseqM+FseqM+FN1
25 17 24 eqbrtrrd φN1MseqM+FdomseqN+FseqM+FseqM+FN1
26 climrel Rel
27 26 releldmi seqN+FseqM+FseqM+FN1seqN+Fdom
28 25 27 syl φN1MseqM+FdomseqN+Fdom
29 simpr φN1MN1M
30 29 1 eleqtrrdi φN1MN1Z
31 30 adantr φN1MseqN+FdomN1Z
32 simpll φN1MseqN+Fdomφ
33 32 3 sylan φN1MseqN+FdomkZFk
34 32 16 syl φN1MseqN+FdomseqN-1+1+F=seqN+F
35 simpr φN1MseqN+FdomseqN+Fdom
36 climdm seqN+FdomseqN+FseqN+F
37 35 36 sylib φN1MseqN+FdomseqN+FseqN+F
38 34 37 eqbrtrd φN1MseqN+FdomseqN-1+1+FseqN+F
39 1 31 33 38 clim2ser2 φN1MseqN+FdomseqM+FseqN+F+seqM+FN1
40 26 releldmi seqM+FseqN+F+seqM+FN1seqM+Fdom
41 39 40 syl φN1MseqN+FdomseqM+Fdom
42 28 41 impbida φN1MseqM+FdomseqN+Fdom
43 42 ex φN1MseqM+FdomseqN+Fdom
44 uzm1 NMN=MN1M
45 9 44 syl φN=MN1M
46 7 43 45 mpjaod φseqM+FdomseqN+Fdom