Metamath Proof Explorer


Theorem isfld2

Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isfld2 KFldKDivRingOpsKCRingOps

Proof

Step Hyp Ref Expression
1 flddivrng KFldKDivRingOps
2 fldcrngo KFldKCRingOps
3 1 2 jca KFldKDivRingOpsKCRingOps
4 iscrngo KCRingOpsKRingOpsKCom2
5 4 simprbi KCRingOpsKCom2
6 elin KDivRingOpsCom2KDivRingOpsKCom2
7 6 biimpri KDivRingOpsKCom2KDivRingOpsCom2
8 df-fld Fld=DivRingOpsCom2
9 7 8 eleqtrrdi KDivRingOpsKCom2KFld
10 5 9 sylan2 KDivRingOpsKCRingOpsKFld
11 3 10 impbii KFldKDivRingOpsKCRingOps