Metamath Proof Explorer


Theorem isfsupp

Description: The property of a class to be a finitely supported function (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion isfsupp RVZWfinSuppZRFunRRsuppZFin

Proof

Step Hyp Ref Expression
1 funeq r=RFunrFunR
2 1 adantr r=Rz=ZFunrFunR
3 oveq12 r=Rz=Zrsuppz=RsuppZ
4 3 eleq1d r=Rz=ZrsuppzFinRsuppZFin
5 2 4 anbi12d r=Rz=ZFunrrsuppzFinFunRRsuppZFin
6 df-fsupp finSupp=rz|FunrrsuppzFin
7 5 6 brabga RVZWfinSuppZRFunRRsuppZFin