Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ishil.k | |
|
ishil.c | |
||
Assertion | ishil | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishil.k | |
|
2 | ishil.c | |
|
3 | fveq2 | |
|
4 | 3 1 | eqtr4di | |
5 | 4 | dmeqd | |
6 | fveq2 | |
|
7 | 6 2 | eqtr4di | |
8 | 5 7 | eqeq12d | |
9 | df-hil | |
|
10 | 8 9 | elrab2 | |