Metamath Proof Explorer


Theorem ishil

Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil.k K=projH
ishil.c C=ClSubSpH
Assertion ishil HHilHPreHildomK=C

Proof

Step Hyp Ref Expression
1 ishil.k K=projH
2 ishil.c C=ClSubSpH
3 fveq2 h=Hprojh=projH
4 3 1 eqtr4di h=Hprojh=K
5 4 dmeqd h=Hdomprojh=domK
6 fveq2 h=HClSubSph=ClSubSpH
7 6 2 eqtr4di h=HClSubSph=C
8 5 7 eqeq12d h=Hdomprojh=ClSubSphdomK=C
9 df-hil Hil=hPreHil|domprojh=ClSubSph
10 8 9 elrab2 HHilHPreHildomK=C