Metamath Proof Explorer


Theorem isinf2

Description: The converse of isinf . Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set hascountably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by ML, 14-Dec-2020)

Ref Expression
Assertion isinf2 nωxxAxn¬AFin

Proof

Step Hyp Ref Expression
1 ssdomg AVxAxA
2 1 adantr AVxnxAxA
3 domen1 xnxAnA
4 3 adantl AVxnxAnA
5 2 4 sylibd AVxnxAnA
6 5 expimpd AVxnxAnA
7 6 ancomsd AVxAxnnA
8 7 exlimdv AVxxAxnnA
9 8 ralimdv AVnωxxAxnnωnA
10 domalom nωnA¬AFin
11 9 10 syl6 AVnωxxAxn¬AFin
12 prcnel ¬AV¬AFin
13 12 a1d ¬AVnωxxAxn¬AFin
14 11 13 pm2.61i nωxxAxn¬AFin