Metamath Proof Explorer


Theorem islinds4

Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypothesis islinds4.j J=LBasisW
Assertion islinds4 WLVecYLIndSWbJYb

Proof

Step Hyp Ref Expression
1 islinds4.j J=LBasisW
2 simpl WLVecYLIndSWWLVec
3 eqid BaseW=BaseW
4 3 linds1 YLIndSWYBaseW
5 4 adantl WLVecYLIndSWYBaseW
6 lveclmod WLVecWLMod
7 6 ad2antrr WLVecYLIndSWxYWLMod
8 eqid ScalarW=ScalarW
9 8 lvecdrng WLVecScalarWDivRing
10 drngnzr ScalarWDivRingScalarWNzRing
11 9 10 syl WLVecScalarWNzRing
12 11 ad2antrr WLVecYLIndSWxYScalarWNzRing
13 simplr WLVecYLIndSWxYYLIndSW
14 simpr WLVecYLIndSWxYxY
15 eqid LSpanW=LSpanW
16 15 8 lindsind2 WLModScalarWNzRingYLIndSWxY¬xLSpanWYx
17 7 12 13 14 16 syl211anc WLVecYLIndSWxY¬xLSpanWYx
18 17 ralrimiva WLVecYLIndSWxY¬xLSpanWYx
19 1 3 15 lbsext WLVecYBaseWxY¬xLSpanWYxbJYb
20 2 5 18 19 syl3anc WLVecYLIndSWbJYb
21 20 ex WLVecYLIndSWbJYb
22 6 ad2antrr WLVecbJYbWLMod
23 1 lbslinds JLIndSW
24 23 sseli bJbLIndSW
25 24 ad2antlr WLVecbJYbbLIndSW
26 simpr WLVecbJYbYb
27 lindsss WLModbLIndSWYbYLIndSW
28 22 25 26 27 syl3anc WLVecbJYbYLIndSW
29 28 rexlimdva2 WLVecbJYbYLIndSW
30 21 29 impbid WLVecYLIndSWbJYb