Description: A set is independent in a vector space iff it is a subset of some basis. This is an axiom of choice equivalent. (Contributed by Stefan O'Rear, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | islinds4.j | |
|
Assertion | islinds4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islinds4.j | |
|
2 | simpl | |
|
3 | eqid | |
|
4 | 3 | linds1 | |
5 | 4 | adantl | |
6 | lveclmod | |
|
7 | 6 | ad2antrr | |
8 | eqid | |
|
9 | 8 | lvecdrng | |
10 | drngnzr | |
|
11 | 9 10 | syl | |
12 | 11 | ad2antrr | |
13 | simplr | |
|
14 | simpr | |
|
15 | eqid | |
|
16 | 15 8 | lindsind2 | |
17 | 7 12 13 14 16 | syl211anc | |
18 | 17 | ralrimiva | |
19 | 1 3 15 | lbsext | |
20 | 2 5 18 19 | syl3anc | |
21 | 20 | ex | |
22 | 6 | ad2antrr | |
23 | 1 | lbslinds | |
24 | 23 | sseli | |
25 | 24 | ad2antlr | |
26 | simpr | |
|
27 | lindsss | |
|
28 | 22 25 26 27 | syl3anc | |
29 | 28 | rexlimdva2 | |
30 | 21 29 | impbid | |