Metamath Proof Explorer


Theorem isline2

Description: Definition of line in terms of projective map. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses isline2.j ˙=joinK
isline2.a A=AtomsK
isline2.n N=LinesK
isline2.m M=pmapK
Assertion isline2 KLatXNpAqApqX=Mp˙q

Proof

Step Hyp Ref Expression
1 isline2.j ˙=joinK
2 isline2.a A=AtomsK
3 isline2.n N=LinesK
4 isline2.m M=pmapK
5 eqid K=K
6 5 1 2 3 isline KLatXNpAqApqX=rA|rKp˙q
7 simpl KLatpAqAKLat
8 eqid BaseK=BaseK
9 8 2 atbase pApBaseK
10 9 ad2antrl KLatpAqApBaseK
11 8 2 atbase qAqBaseK
12 11 ad2antll KLatpAqAqBaseK
13 8 1 latjcl KLatpBaseKqBaseKp˙qBaseK
14 7 10 12 13 syl3anc KLatpAqAp˙qBaseK
15 8 5 2 4 pmapval KLatp˙qBaseKMp˙q=rA|rKp˙q
16 14 15 syldan KLatpAqAMp˙q=rA|rKp˙q
17 16 eqeq2d KLatpAqAX=Mp˙qX=rA|rKp˙q
18 17 anbi2d KLatpAqApqX=Mp˙qpqX=rA|rKp˙q
19 18 2rexbidva KLatpAqApqX=Mp˙qpAqApqX=rA|rKp˙q
20 6 19 bitr4d KLatXNpAqApqX=Mp˙q