Metamath Proof Explorer


Theorem islnr2

Description: Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses islnr2.b B=BaseR
islnr2.u U=LIdealR
islnr2.n N=RSpanR
Assertion islnr2 RLNoeRRRingiUg𝒫BFini=Ng

Proof

Step Hyp Ref Expression
1 islnr2.b B=BaseR
2 islnr2.u U=LIdealR
3 islnr2.n N=RSpanR
4 islnr RLNoeRRRingringLModRLNoeM
5 rlmlmod RRingringLModRLMod
6 rlmbas BaseR=BaseringLModR
7 1 6 eqtri B=BaseringLModR
8 lidlval LIdealR=LSubSpringLModR
9 2 8 eqtri U=LSubSpringLModR
10 rspval RSpanR=LSpanringLModR
11 3 10 eqtri N=LSpanringLModR
12 7 9 11 islnm2 ringLModRLNoeMringLModRLModiUg𝒫BFini=Ng
13 12 baib ringLModRLModringLModRLNoeMiUg𝒫BFini=Ng
14 5 13 syl RRingringLModRLNoeMiUg𝒫BFini=Ng
15 14 pm5.32i RRingringLModRLNoeMRRingiUg𝒫BFini=Ng
16 4 15 bitri RLNoeRRRingiUg𝒫BFini=Ng