Metamath Proof Explorer


Theorem islnr3

Description: Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypotheses islnr3.b B=BaseR
islnr3.u U=LIdealR
Assertion islnr3 RLNoeRRRingUNoeACSB

Proof

Step Hyp Ref Expression
1 islnr3.b B=BaseR
2 islnr3.u U=LIdealR
3 eqid RSpanR=RSpanR
4 1 2 3 islnr2 RLNoeRRRingxUy𝒫BFinx=RSpanRy
5 eqid mrClsU=mrClsU
6 2 3 5 mrcrsp RRingRSpanR=mrClsU
7 6 fveq1d RRingRSpanRy=mrClsUy
8 7 eqeq2d RRingx=RSpanRyx=mrClsUy
9 8 rexbidv RRingy𝒫BFinx=RSpanRyy𝒫BFinx=mrClsUy
10 9 ralbidv RRingxUy𝒫BFinx=RSpanRyxUy𝒫BFinx=mrClsUy
11 1 2 lidlacs RRingUACSB
12 11 biantrurd RRingxUy𝒫BFinx=mrClsUyUACSBxUy𝒫BFinx=mrClsUy
13 10 12 bitrd RRingxUy𝒫BFinx=RSpanRyUACSBxUy𝒫BFinx=mrClsUy
14 5 isnacs UNoeACSBUACSBxUy𝒫BFinx=mrClsUy
15 13 14 bitr4di RRingxUy𝒫BFinx=RSpanRyUNoeACSB
16 15 pm5.32i RRingxUy𝒫BFinx=RSpanRyRRingUNoeACSB
17 4 16 bitri RLNoeRRRingUNoeACSB