Metamath Proof Explorer


Theorem isltrn2N

Description: The predicate "is a lattice translation". Version of isltrn that considers only different p and q . TODO: Can this eliminate some separate proofs for the p = q case? (Contributed by NM, 22-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ltrnset.l ˙=K
ltrnset.j ˙=joinK
ltrnset.m ˙=meetK
ltrnset.a A=AtomsK
ltrnset.h H=LHypK
ltrnset.d D=LDilKW
ltrnset.t T=LTrnKW
Assertion isltrn2N KBWHFTFDpAqA¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W

Proof

Step Hyp Ref Expression
1 ltrnset.l ˙=K
2 ltrnset.j ˙=joinK
3 ltrnset.m ˙=meetK
4 ltrnset.a A=AtomsK
5 ltrnset.h H=LHypK
6 ltrnset.d D=LDilKW
7 ltrnset.t T=LTrnKW
8 1 2 3 4 5 6 7 isltrn KBWHFTFDpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
9 3simpa ¬p˙W¬q˙Wpq¬p˙W¬q˙W
10 9 imim1i ¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W
11 3anass pq¬p˙W¬q˙Wpq¬p˙W¬q˙W
12 3anrot pq¬p˙W¬q˙W¬p˙W¬q˙Wpq
13 df-ne pq¬p=q
14 13 anbi1i pq¬p˙W¬q˙W¬p=q¬p˙W¬q˙W
15 11 12 14 3bitr3i ¬p˙W¬q˙Wpq¬p=q¬p˙W¬q˙W
16 15 imbi1i ¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
17 impexp ¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
18 16 17 bitri ¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
19 id p=qp=q
20 fveq2 p=qFp=Fq
21 19 20 oveq12d p=qp˙Fp=q˙Fq
22 21 oveq1d p=qp˙Fp˙W=q˙Fq˙W
23 22 a1d p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
24 pm2.61 p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
25 23 24 ax-mp ¬p=q¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
26 18 25 sylbi ¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W
27 10 26 impbii ¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙W¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W
28 27 2ralbii pAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙WpAqA¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W
29 28 anbi2i FDpAqA¬p˙W¬q˙Wp˙Fp˙W=q˙Fq˙WFDpAqA¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W
30 8 29 bitrdi KBWHFTFDpAqA¬p˙W¬q˙Wpqp˙Fp˙W=q˙Fq˙W