Metamath Proof Explorer


Theorem ismbf1

Description: The predicate " F is a measurable function". This is more naturally stated for functions on the reals, see ismbf and ismbfcn for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014)

Ref Expression
Assertion ismbf1 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol

Proof

Step Hyp Ref Expression
1 coeq2 f = F f = F
2 1 cnveqd f = F f -1 = F -1
3 2 imaeq1d f = F f -1 x = F -1 x
4 3 eleq1d f = F f -1 x dom vol F -1 x dom vol
5 coeq2 f = F f = F
6 5 cnveqd f = F f -1 = F -1
7 6 imaeq1d f = F f -1 x = F -1 x
8 7 eleq1d f = F f -1 x dom vol F -1 x dom vol
9 4 8 anbi12d f = F f -1 x dom vol f -1 x dom vol F -1 x dom vol F -1 x dom vol
10 9 ralbidv f = F x ran . f -1 x dom vol f -1 x dom vol x ran . F -1 x dom vol F -1 x dom vol
11 df-mbf MblFn = f 𝑝𝑚 | x ran . f -1 x dom vol f -1 x dom vol
12 10 11 elrab2 F MblFn F 𝑝𝑚 x ran . F -1 x dom vol F -1 x dom vol