Metamath Proof Explorer


Theorem ismhp3

Description: A polynomial is homogeneous iff the degree of every nonzero term is the same. (Contributed by SN, 22-Jul-2024)

Ref Expression
Hypotheses mhpfval.h H = I mHomP R
mhpfval.p P = I mPoly R
mhpfval.b B = Base P
mhpfval.0 0 ˙ = 0 R
mhpfval.d D = h 0 I | h -1 Fin
mhpfval.i φ I V
mhpfval.r φ R W
mhpval.n φ N 0
ismhp2.1 φ X B
Assertion ismhp3 φ X H N d D X d 0 ˙ fld 𝑠 0 d = N

Proof

Step Hyp Ref Expression
1 mhpfval.h H = I mHomP R
2 mhpfval.p P = I mPoly R
3 mhpfval.b B = Base P
4 mhpfval.0 0 ˙ = 0 R
5 mhpfval.d D = h 0 I | h -1 Fin
6 mhpfval.i φ I V
7 mhpfval.r φ R W
8 mhpval.n φ N 0
9 ismhp2.1 φ X B
10 1 2 3 4 5 6 7 8 ismhp φ X H N X B X supp 0 ˙ g D | fld 𝑠 0 g = N
11 9 biantrurd φ X supp 0 ˙ g D | fld 𝑠 0 g = N X B X supp 0 ˙ g D | fld 𝑠 0 g = N
12 eqid Base R = Base R
13 2 12 3 5 9 mplelf φ X : D Base R
14 13 ffnd φ X Fn D
15 4 fvexi 0 ˙ V
16 15 a1i φ 0 ˙ V
17 elsuppfng X Fn D X B 0 ˙ V d supp 0 ˙ X d D X d 0 ˙
18 14 9 16 17 syl3anc φ d supp 0 ˙ X d D X d 0 ˙
19 oveq2 g = d fld 𝑠 0 g = fld 𝑠 0 d
20 19 eqeq1d g = d fld 𝑠 0 g = N fld 𝑠 0 d = N
21 20 elrab d g D | fld 𝑠 0 g = N d D fld 𝑠 0 d = N
22 21 a1i φ d g D | fld 𝑠 0 g = N d D fld 𝑠 0 d = N
23 18 22 imbi12d φ d supp 0 ˙ X d g D | fld 𝑠 0 g = N d D X d 0 ˙ d D fld 𝑠 0 d = N
24 imdistan d D X d 0 ˙ fld 𝑠 0 d = N d D X d 0 ˙ d D fld 𝑠 0 d = N
25 23 24 bitr4di φ d supp 0 ˙ X d g D | fld 𝑠 0 g = N d D X d 0 ˙ fld 𝑠 0 d = N
26 25 albidv φ d d supp 0 ˙ X d g D | fld 𝑠 0 g = N d d D X d 0 ˙ fld 𝑠 0 d = N
27 dfss2 X supp 0 ˙ g D | fld 𝑠 0 g = N d d supp 0 ˙ X d g D | fld 𝑠 0 g = N
28 df-ral d D X d 0 ˙ fld 𝑠 0 d = N d d D X d 0 ˙ fld 𝑠 0 d = N
29 26 27 28 3bitr4g φ X supp 0 ˙ g D | fld 𝑠 0 g = N d D X d 0 ˙ fld 𝑠 0 d = N
30 10 11 29 3bitr2d φ X H N d D X d 0 ˙ fld 𝑠 0 d = N