Metamath Proof Explorer


Theorem isms

Description: Express the predicate " <. X , D >. is a metric space" with underlying set X and distance function D . (Contributed by NM, 27-Aug-2006) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypotheses isms.j J=TopOpenK
isms.x X=BaseK
isms.d D=distKX×X
Assertion isms KMetSpK∞MetSpDMetX

Proof

Step Hyp Ref Expression
1 isms.j J=TopOpenK
2 isms.x X=BaseK
3 isms.d D=distKX×X
4 fveq2 f=Kdistf=distK
5 fveq2 f=KBasef=BaseK
6 5 2 eqtr4di f=KBasef=X
7 6 sqxpeqd f=KBasef×Basef=X×X
8 4 7 reseq12d f=KdistfBasef×Basef=distKX×X
9 8 3 eqtr4di f=KdistfBasef×Basef=D
10 6 fveq2d f=KMetBasef=MetX
11 9 10 eleq12d f=KdistfBasef×BasefMetBasefDMetX
12 df-ms MetSp=f∞MetSp|distfBasef×BasefMetBasef
13 11 12 elrab2 KMetSpK∞MetSpDMetX