Metamath Proof Explorer


Theorem isnghm3

Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N=SnormOpT
Assertion isnghm3 SNrmGrpTNrmGrpFSGrpHomTFSNGHomTNF<+∞

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 1 isnghm2 SNrmGrpTNrmGrpFSGrpHomTFSNGHomTNF
3 1 nmocl SNrmGrpTNrmGrpFSGrpHomTNF*
4 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
5 ge0gtmnf NF*0NF−∞<NF
6 3 4 5 syl2anc SNrmGrpTNrmGrpFSGrpHomT−∞<NF
7 xrrebnd NF*NF−∞<NFNF<+∞
8 7 baibd NF*−∞<NFNFNF<+∞
9 3 6 8 syl2anc SNrmGrpTNrmGrpFSGrpHomTNFNF<+∞
10 2 9 bitrd SNrmGrpTNrmGrpFSGrpHomTFSNGHomTNF<+∞