Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isngp.n | |
|
isngp.z | |
||
isngp.d | |
||
Assertion | isngp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isngp.n | |
|
2 | isngp.z | |
|
3 | isngp.d | |
|
4 | elin | |
|
5 | 4 | anbi1i | |
6 | fveq2 | |
|
7 | 6 1 | eqtr4di | |
8 | fveq2 | |
|
9 | 8 2 | eqtr4di | |
10 | 7 9 | coeq12d | |
11 | fveq2 | |
|
12 | 11 3 | eqtr4di | |
13 | 10 12 | sseq12d | |
14 | df-ngp | |
|
15 | 13 14 | elrab2 | |
16 | df-3an | |
|
17 | 5 15 16 | 3bitr4i | |