Metamath Proof Explorer


Theorem isngp

Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses isngp.n N=normG
isngp.z -˙=-G
isngp.d D=distG
Assertion isngp GNrmGrpGGrpGMetSpN-˙D

Proof

Step Hyp Ref Expression
1 isngp.n N=normG
2 isngp.z -˙=-G
3 isngp.d D=distG
4 elin GGrpMetSpGGrpGMetSp
5 4 anbi1i GGrpMetSpN-˙DGGrpGMetSpN-˙D
6 fveq2 g=Gnormg=normG
7 6 1 eqtr4di g=Gnormg=N
8 fveq2 g=G-g=-G
9 8 2 eqtr4di g=G-g=-˙
10 7 9 coeq12d g=Gnormg-g=N-˙
11 fveq2 g=Gdistg=distG
12 11 3 eqtr4di g=Gdistg=D
13 10 12 sseq12d g=Gnormg-gdistgN-˙D
14 df-ngp NrmGrp=gGrpMetSp|normg-gdistg
15 13 14 elrab2 GNrmGrpGGrpMetSpN-˙D
16 df-3an GGrpGMetSpN-˙DGGrpGMetSpN-˙D
17 5 15 16 3bitr4i GNrmGrpGGrpGMetSpN-˙D