Metamath Proof Explorer


Theorem isocnv3

Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses isocnv3.1 C=A×AR
isocnv3.2 D=B×BS
Assertion isocnv3 HIsomR,SABHIsomC,DAB

Proof

Step Hyp Ref Expression
1 isocnv3.1 C=A×AR
2 isocnv3.2 D=B×BS
3 notbi xRyHxSHy¬xRy¬HxSHy
4 brxp xA×AyxAyA
5 1 breqi xCyxA×ARy
6 brdif xA×ARyxA×Ay¬xRy
7 5 6 bitri xCyxA×Ay¬xRy
8 7 baib xA×AyxCy¬xRy
9 4 8 sylbir xAyAxCy¬xRy
10 9 adantl H:A1-1 ontoBxAyAxCy¬xRy
11 f1of H:A1-1 ontoBH:AB
12 ffvelcdm H:ABxAHxB
13 ffvelcdm H:AByAHyB
14 12 13 anim12dan H:ABxAyAHxBHyB
15 brxp HxB×BHyHxBHyB
16 14 15 sylibr H:ABxAyAHxB×BHy
17 11 16 sylan H:A1-1 ontoBxAyAHxB×BHy
18 2 breqi HxDHyHxB×BSHy
19 brdif HxB×BSHyHxB×BHy¬HxSHy
20 18 19 bitri HxDHyHxB×BHy¬HxSHy
21 20 baib HxB×BHyHxDHy¬HxSHy
22 17 21 syl H:A1-1 ontoBxAyAHxDHy¬HxSHy
23 10 22 bibi12d H:A1-1 ontoBxAyAxCyHxDHy¬xRy¬HxSHy
24 3 23 bitr4id H:A1-1 ontoBxAyAxRyHxSHyxCyHxDHy
25 24 2ralbidva H:A1-1 ontoBxAyAxRyHxSHyxAyAxCyHxDHy
26 25 pm5.32i H:A1-1 ontoBxAyAxRyHxSHyH:A1-1 ontoBxAyAxCyHxDHy
27 df-isom HIsomR,SABH:A1-1 ontoBxAyAxRyHxSHy
28 df-isom HIsomC,DABH:A1-1 ontoBxAyAxCyHxDHy
29 26 27 28 3bitr4i HIsomR,SABHIsomC,DAB