Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | isof1oopb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex | |
|
2 | fvex | |
|
3 | 1 2 | opelvv | |
4 | df-br | |
|
5 | 3 4 | mpbir | |
6 | 5 | a1i | |
7 | opelvvg | |
|
8 | df-br | |
|
9 | 7 8 | sylibr | |
10 | 9 | a1d | |
11 | 6 10 | impbid2 | |
12 | 11 | adantl | |
13 | 12 | ralrimivva | |
14 | 13 | pm4.71i | |
15 | df-isom | |
|
16 | 14 15 | bitr4i | |