Metamath Proof Explorer


Theorem isof1oopb

Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021)

Ref Expression
Assertion isof1oopb H:A1-1 ontoBHIsomV×V,V×VAB

Proof

Step Hyp Ref Expression
1 fvex HxV
2 fvex HyV
3 1 2 opelvv HxHyV×V
4 df-br HxV×VHyHxHyV×V
5 3 4 mpbir HxV×VHy
6 5 a1i xV×VyHxV×VHy
7 opelvvg xAyAxyV×V
8 df-br xV×VyxyV×V
9 7 8 sylibr xAyAxV×Vy
10 9 a1d xAyAHxV×VHyxV×Vy
11 6 10 impbid2 xAyAxV×VyHxV×VHy
12 11 adantl H:A1-1 ontoBxAyAxV×VyHxV×VHy
13 12 ralrimivva H:A1-1 ontoBxAyAxV×VyHxV×VHy
14 13 pm4.71i H:A1-1 ontoBH:A1-1 ontoBxAyAxV×VyHxV×VHy
15 df-isom HIsomV×V,V×VABH:A1-1 ontoBxAyAxV×VyHxV×VHy
16 14 15 bitr4i H:A1-1 ontoBHIsomV×V,V×VAB