Description: A group is a P -group if every element has some power of P as its order. (Contributed by Mario Carneiro, 15-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ispgp.1 | |
|
ispgp.2 | |
||
Assertion | ispgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ispgp.1 | |
|
2 | ispgp.2 | |
|
3 | simpr | |
|
4 | 3 | fveq2d | |
5 | 4 1 | eqtr4di | |
6 | 3 | fveq2d | |
7 | 6 2 | eqtr4di | |
8 | 7 | fveq1d | |
9 | simpl | |
|
10 | 9 | oveq1d | |
11 | 8 10 | eqeq12d | |
12 | 11 | rexbidv | |
13 | 5 12 | raleqbidv | |
14 | df-pgp | |
|
15 | 13 14 | brab2a | |
16 | df-3an | |
|
17 | 15 16 | bitr4i | |