Metamath Proof Explorer


Theorem ispgp

Description: A group is a P -group if every element has some power of P as its order. (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses ispgp.1 X=BaseG
ispgp.2 O=odG
Assertion ispgp PpGrpGPGGrpxXn0Ox=Pn

Proof

Step Hyp Ref Expression
1 ispgp.1 X=BaseG
2 ispgp.2 O=odG
3 simpr p=Pg=Gg=G
4 3 fveq2d p=Pg=GBaseg=BaseG
5 4 1 eqtr4di p=Pg=GBaseg=X
6 3 fveq2d p=Pg=Godg=odG
7 6 2 eqtr4di p=Pg=Godg=O
8 7 fveq1d p=Pg=Godgx=Ox
9 simpl p=Pg=Gp=P
10 9 oveq1d p=Pg=Gpn=Pn
11 8 10 eqeq12d p=Pg=Godgx=pnOx=Pn
12 11 rexbidv p=Pg=Gn0odgx=pnn0Ox=Pn
13 5 12 raleqbidv p=Pg=GxBasegn0odgx=pnxXn0Ox=Pn
14 df-pgp pGrp=pg|pgGrpxBasegn0odgx=pn
15 13 14 brab2a PpGrpGPGGrpxXn0Ox=Pn
16 df-3an PGGrpxXn0Ox=PnPGGrpxXn0Ox=Pn
17 15 16 bitr4i PpGrpGPGGrpxXn0Ox=Pn