Metamath Proof Explorer


Theorem isprrngo

Description: The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses isprrng.1 G=1stR
isprrng.2 Z=GIdG
Assertion isprrngo RPrRingRRingOpsZPrIdlR

Proof

Step Hyp Ref Expression
1 isprrng.1 G=1stR
2 isprrng.2 Z=GIdG
3 fveq2 r=R1str=1stR
4 3 1 eqtr4di r=R1str=G
5 4 fveq2d r=RGId1str=GIdG
6 5 2 eqtr4di r=RGId1str=Z
7 6 sneqd r=RGId1str=Z
8 fveq2 r=RPrIdlr=PrIdlR
9 7 8 eleq12d r=RGId1strPrIdlrZPrIdlR
10 df-prrngo PrRing=rRingOps|GId1strPrIdlr
11 9 10 elrab2 RPrRingRRingOpsZPrIdlR