Metamath Proof Explorer


Theorem issmfled

Description: A sufficient condition for " F being a real-valued measurable function w.r.t. to the sigma-algebra S ". (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses issmfled.a a φ
issmfled.s φ S SAlg
issmfled.d φ D S
issmfled.f φ F : D
issmfled.6 φ a x D | F x a S 𝑡 D
Assertion issmfled φ F SMblFn S

Proof

Step Hyp Ref Expression
1 issmfled.a a φ
2 issmfled.s φ S SAlg
3 issmfled.d φ D S
4 issmfled.f φ F : D
5 issmfled.6 φ a x D | F x a S 𝑡 D
6 4 fdmd φ dom F = D
7 6 3 eqsstrd φ dom F S
8 4 ffdmd φ F : dom F
9 6 rabeqdv φ x dom F | F x a = x D | F x a
10 6 oveq2d φ S 𝑡 dom F = S 𝑡 D
11 9 10 eleq12d φ x dom F | F x a S 𝑡 dom F x D | F x a S 𝑡 D
12 11 adantr φ a x dom F | F x a S 𝑡 dom F x D | F x a S 𝑡 D
13 5 12 mpbird φ a x dom F | F x a S 𝑡 dom F
14 13 ex φ a x dom F | F x a S 𝑡 dom F
15 1 14 ralrimi φ a x dom F | F x a S 𝑡 dom F
16 7 8 15 3jca φ dom F S F : dom F a x dom F | F x a S 𝑡 dom F
17 eqid dom F = dom F
18 2 17 issmfle φ F SMblFn S dom F S F : dom F a x dom F | F x a S 𝑡 dom F
19 16 18 mpbird φ F SMblFn S