Metamath Proof Explorer


Theorem issubmndb

Description: The submonoid predicate. Analogous to issubg . (Contributed by AV, 1-Feb-2024)

Ref Expression
Hypotheses issubmndb.b B=BaseG
issubmndb.z 0˙=0G
Assertion issubmndb SSubMndGGMndG𝑠SMndSB0˙S

Proof

Step Hyp Ref Expression
1 issubmndb.b B=BaseG
2 issubmndb.z 0˙=0G
3 eqid G𝑠S=G𝑠S
4 1 2 3 issubm2 GMndSSubMndGSB0˙SG𝑠SMnd
5 3anrot G𝑠SMndSB0˙SSB0˙SG𝑠SMnd
6 3anass G𝑠SMndSB0˙SG𝑠SMndSB0˙S
7 5 6 bitr3i SB0˙SG𝑠SMndG𝑠SMndSB0˙S
8 4 7 bitrdi GMndSSubMndGG𝑠SMndSB0˙S
9 8 pm5.32i GMndSSubMndGGMndG𝑠SMndSB0˙S
10 submrcl SSubMndGGMnd
11 10 pm4.71ri SSubMndGGMndSSubMndG
12 anass GMndG𝑠SMndSB0˙SGMndG𝑠SMndSB0˙S
13 9 11 12 3bitr4i SSubMndGGMndG𝑠SMndSB0˙S