Metamath Proof Explorer


Theorem istps

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses istps.a A=BaseK
istps.j J=TopOpenK
Assertion istps KTopSpJTopOnA

Proof

Step Hyp Ref Expression
1 istps.a A=BaseK
2 istps.j J=TopOpenK
3 df-topsp TopSp=f|TopOpenfTopOnBasef
4 3 eleq2i KTopSpKf|TopOpenfTopOnBasef
5 topontop JTopOnAJTop
6 0ntop ¬Top
7 fvprc ¬KVTopOpenK=
8 2 7 eqtrid ¬KVJ=
9 8 eleq1d ¬KVJTopTop
10 6 9 mtbiri ¬KV¬JTop
11 10 con4i JTopKV
12 5 11 syl JTopOnAKV
13 fveq2 f=KTopOpenf=TopOpenK
14 13 2 eqtr4di f=KTopOpenf=J
15 fveq2 f=KBasef=BaseK
16 15 1 eqtr4di f=KBasef=A
17 16 fveq2d f=KTopOnBasef=TopOnA
18 14 17 eleq12d f=KTopOpenfTopOnBasefJTopOnA
19 12 18 elab3 Kf|TopOpenfTopOnBasefJTopOnA
20 4 19 bitri KTopSpJTopOnA