Metamath Proof Explorer


Theorem istps

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses istps.a A = Base K
istps.j J = TopOpen K
Assertion istps K TopSp J TopOn A

Proof

Step Hyp Ref Expression
1 istps.a A = Base K
2 istps.j J = TopOpen K
3 df-topsp TopSp = f | TopOpen f TopOn Base f
4 3 eleq2i K TopSp K f | TopOpen f TopOn Base f
5 topontop J TopOn A J Top
6 0ntop ¬ Top
7 fvprc ¬ K V TopOpen K =
8 2 7 eqtrid ¬ K V J =
9 8 eleq1d ¬ K V J Top Top
10 6 9 mtbiri ¬ K V ¬ J Top
11 10 con4i J Top K V
12 5 11 syl J TopOn A K V
13 fveq2 f = K TopOpen f = TopOpen K
14 13 2 eqtr4di f = K TopOpen f = J
15 fveq2 f = K Base f = Base K
16 15 1 eqtr4di f = K Base f = A
17 16 fveq2d f = K TopOn Base f = TopOn A
18 14 17 eleq12d f = K TopOpen f TopOn Base f J TopOn A
19 12 18 elab3 K f | TopOpen f TopOn Base f J TopOn A
20 4 19 bitri K TopSp J TopOn A