Metamath Proof Explorer


Theorem isunit3

Description: Alternate definition of being a unit. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses isunit2.b B = Base R
isunit2.u U = Unit R
isunit2.m · ˙ = R
isunit2.1 1 ˙ = 1 R
isunit3.x φ X B
isunit3.r φ R Ring
Assertion isunit3 φ X U y B X · ˙ y = 1 ˙ y · ˙ X = 1 ˙

Proof

Step Hyp Ref Expression
1 isunit2.b B = Base R
2 isunit2.u U = Unit R
3 isunit2.m · ˙ = R
4 isunit2.1 1 ˙ = 1 R
5 isunit3.x φ X B
6 isunit3.r φ R Ring
7 1 2 3 4 isunit2 X U X B u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙
8 5 biantrurd φ u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙ X B u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙
9 7 8 bitr4id φ X U u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙
10 eqid mulGrp R = mulGrp R
11 10 1 mgpbas B = Base mulGrp R
12 10 4 ringidval 1 ˙ = 0 mulGrp R
13 10 3 mgpplusg · ˙ = + mulGrp R
14 10 ringmgp R Ring mulGrp R Mnd
15 6 14 syl φ mulGrp R Mnd
16 11 12 13 15 5 mndlrinvb φ u B X · ˙ u = 1 ˙ v B v · ˙ X = 1 ˙ y B X · ˙ y = 1 ˙ y · ˙ X = 1 ˙
17 9 16 bitrd φ X U y B X · ˙ y = 1 ˙ y · ˙ X = 1 ˙