Metamath Proof Explorer


Theorem itcoval0

Description: A function iterated zero times (defined as identity function). (Contributed by AV, 2-May-2024)

Ref Expression
Assertion itcoval0 Could not format assertion : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcoval Could not format ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) : No typesetting found for |- ( F e. V -> ( IterComp ` F ) = seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ) with typecode |-
2 1 fveq1d Could not format ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( seq 0 ( ( g e. _V , j e. _V |-> ( F o. g ) ) , ( i e. NN0 |-> if ( i = 0 , ( _I |` dom F ) , F ) ) ) ` 0 ) ) with typecode |-
3 0z 0
4 eqidd FVi0ifi=0IdomFF=i0ifi=0IdomFF
5 iftrue i=0ifi=0IdomFF=IdomF
6 5 adantl FVi=0ifi=0IdomFF=IdomF
7 0nn0 00
8 7 a1i FV00
9 dmexg FVdomFV
10 9 resiexd FVIdomFV
11 4 6 8 10 fvmptd FVi0ifi=0IdomFF0=IdomF
12 3 11 seq1i FVseq0gV,jVFgi0ifi=0IdomFF0=IdomF
13 2 12 eqtrd Could not format ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) : No typesetting found for |- ( F e. V -> ( ( IterComp ` F ) ` 0 ) = ( _I |` dom F ) ) with typecode |-