Metamath Proof Explorer


Theorem itcovalt2lem1

Description: Lemma 1 for itcovalt2 : induction basis. (Contributed by AV, 5-May-2024)

Ref Expression
Hypothesis itcovalt2.f F=n02n+C
Assertion itcovalt2lem1 Could not format assertion : No typesetting found for |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcovalt2.f F=n02n+C
2 nn0ex 0V
3 ovexd n02n+CV
4 3 rgen n02n+CV
5 2 4 pm3.2i 0Vn02n+CV
6 1 itcoval0mpt Could not format ( ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) : No typesetting found for |- ( ( NN0 e. _V /\ A. n e. NN0 ( ( 2 x. n ) + C ) e. _V ) -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) with typecode |-
7 5 6 mp1i Could not format ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) : No typesetting found for |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> n ) ) with typecode |-
8 simpr C0n0n0
9 8 nn0cnd C0n0n
10 simpl C0n0C0
11 10 nn0cnd C0n0C
12 2nn0 20
13 12 numexp0 20=1
14 13 a1i C0n020=1
15 14 oveq2d C0n0n+C20=n+C1
16 8 10 nn0addcld C0n0n+C0
17 16 nn0cnd C0n0n+C
18 17 mulridd C0n0n+C1=n+C
19 15 18 eqtrd C0n0n+C20=n+C
20 9 11 19 mvrraddd C0n0n+C20C=n
21 20 eqcomd C0n0n=n+C20C
22 21 mpteq2dva C0n0n=n0n+C20C
23 7 22 eqtrd Could not format ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) : No typesetting found for |- ( C e. NN0 -> ( ( IterComp ` F ) ` 0 ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ 0 ) ) - C ) ) ) with typecode |-