Metamath Proof Explorer


Theorem itcovalt2lem2

Description: Lemma 2 for itcovalt2 : induction step. (Contributed by AV, 7-May-2024)

Ref Expression
Hypothesis itcovalt2.f F=n02n+C
Assertion itcovalt2lem2 Could not format assertion : No typesetting found for |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 itcovalt2.f F=n02n+C
2 nn0ex 0V
3 2 mptex n02n+CV
4 1 3 eqeltri FV
5 simpl y0C0y0
6 simpr Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) with typecode |-
7 itcovalsucov Could not format ( ( F e. _V /\ y e. NN0 /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) : No typesetting found for |- ( ( F e. _V /\ y e. NN0 /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) with typecode |-
8 4 5 6 7 mp3an2ani Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) ) with typecode |-
9 2nn 2
10 9 a1i y02
11 id y0y0
12 10 11 nnexpcld y02y
13 itcovalt2lem2lem1 2yC0n0n+C2yC0
14 12 13 sylanl1 y0C0n0n+C2yC0
15 eqidd y0C0n0n+C2yC=n0n+C2yC
16 oveq2 n=m2n=2m
17 16 oveq1d n=m2n+C=2m+C
18 17 cbvmptv n02n+C=m02m+C
19 1 18 eqtri F=m02m+C
20 19 a1i y0C0F=m02m+C
21 oveq2 m=n+C2yC2m=2n+C2yC
22 21 oveq1d m=n+C2yC2m+C=2n+C2yC+C
23 14 15 20 22 fmptco y0C0Fn0n+C2yC=n02n+C2yC+C
24 itcovalt2lem2lem2 y0C0n02n+C2yC+C=n+C2y+1C
25 24 mpteq2dva y0C0n02n+C2yC+C=n0n+C2y+1C
26 23 25 eqtrd y0C0Fn0n+C2yC=n0n+C2y+1C
27 26 adantr Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( F o. ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) with typecode |-
28 8 27 eqtrd Could not format ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) : No typesetting found for |- ( ( ( y e. NN0 /\ C e. NN0 ) /\ ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) with typecode |-
29 28 ex Could not format ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) : No typesetting found for |- ( ( y e. NN0 /\ C e. NN0 ) -> ( ( ( IterComp ` F ) ` y ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ y ) ) - C ) ) -> ( ( IterComp ` F ) ` ( y + 1 ) ) = ( n e. NN0 |-> ( ( ( n + C ) x. ( 2 ^ ( y + 1 ) ) ) - C ) ) ) ) with typecode |-