Metamath Proof Explorer


Theorem itcovalt2lem2lem1

Description: Lemma 1 for itcovalt2lem2 . (Contributed by AV, 6-May-2024)

Ref Expression
Assertion itcovalt2lem2lem1 YC0N0N+CYC0

Proof

Step Hyp Ref Expression
1 nn0re C0C
2 1 adantl YC0C
3 2 adantr YC0N0C
4 simpr YC0N0N0
5 simpr YC0C0
6 5 adantr YC0N0C0
7 4 6 nn0addcld YC0N0N+C0
8 7 nn0red YC0N0N+C
9 nnnn0 YY0
10 9 ad2antrr YC0N0Y0
11 7 10 nn0mulcld YC0N0N+CY0
12 11 nn0red YC0N0N+CY
13 nn0ge0 N00N
14 13 adantl YC0N00N
15 6 nn0red YC0N0C
16 4 nn0red YC0N0N
17 15 16 addge02d YC0N00NCN+C
18 14 17 mpbid YC0N0CN+C
19 simpll YC0N0Y
20 19 nnred YC0N0Y
21 7 nn0ge0d YC0N00N+C
22 nnge1 Y1Y
23 22 ad2antrr YC0N01Y
24 8 20 21 23 lemulge11d YC0N0N+CN+CY
25 3 8 12 18 24 letrd YC0N0CN+CY
26 nn0sub C0N+CY0CN+CYN+CYC0
27 6 11 26 syl2anc YC0N0CN+CYN+CYC0
28 25 27 mpbid YC0N0N+CYC0