| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℝ ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 3 |
2
|
adantr |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 5 |
|
simpr |
⊢ ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 7 |
4 6
|
nn0addcld |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℕ0 ) |
| 8 |
7
|
nn0red |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℝ ) |
| 9 |
|
nnnn0 |
⊢ ( 𝑌 ∈ ℕ → 𝑌 ∈ ℕ0 ) |
| 10 |
9
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℕ0 ) |
| 11 |
7 10
|
nn0mulcld |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℕ0 ) |
| 12 |
11
|
nn0red |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℝ ) |
| 13 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ 𝑁 ) |
| 15 |
6
|
nn0red |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
| 16 |
4
|
nn0red |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
| 17 |
15 16
|
addge02d |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 ≤ 𝑁 ↔ 𝐶 ≤ ( 𝑁 + 𝐶 ) ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ≤ ( 𝑁 + 𝐶 ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℕ ) |
| 20 |
19
|
nnred |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑌 ∈ ℝ ) |
| 21 |
7
|
nn0ge0d |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑁 + 𝐶 ) ) |
| 22 |
|
nnge1 |
⊢ ( 𝑌 ∈ ℕ → 1 ≤ 𝑌 ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ 𝑌 ) |
| 24 |
8 20 21 23
|
lemulge11d |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ) |
| 25 |
3 8 12 18 24
|
letrd |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ) |
| 26 |
|
nn0sub |
⊢ ( ( 𝐶 ∈ ℕ0 ∧ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ∈ ℕ0 ) → ( 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ↔ ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) ) |
| 27 |
6 11 26
|
syl2anc |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐶 ≤ ( ( 𝑁 + 𝐶 ) · 𝑌 ) ↔ ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) ) |
| 28 |
25 27
|
mpbid |
⊢ ( ( ( 𝑌 ∈ ℕ ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑁 + 𝐶 ) · 𝑌 ) − 𝐶 ) ∈ ℕ0 ) |