| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2cnd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℂ ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 3 |
|
simpr |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℕ0 ) |
| 5 |
2 4
|
nn0addcld |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℕ0 ) |
| 6 |
5
|
nn0cnd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 𝐶 ) ∈ ℂ ) |
| 7 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 8 |
7
|
a1i |
⊢ ( 𝑌 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 9 |
|
id |
⊢ ( 𝑌 ∈ ℕ0 → 𝑌 ∈ ℕ0 ) |
| 10 |
8 9
|
nn0expcld |
⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ 𝑌 ) ∈ ℕ0 ) |
| 11 |
10
|
nn0cnd |
⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ 𝑌 ) ∈ ℂ ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑌 ) ∈ ℂ ) |
| 13 |
6 12
|
mulcld |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ∈ ℂ ) |
| 14 |
|
nn0cn |
⊢ ( 𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 16 |
1 13 15
|
subdid |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) = ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) ) |
| 17 |
16
|
oveq1d |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) + 𝐶 ) ) |
| 18 |
7
|
a1i |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 19 |
10
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑌 ) ∈ ℕ0 ) |
| 20 |
5 19
|
nn0mulcld |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ∈ ℕ0 ) |
| 21 |
18 20
|
nn0mulcld |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) ∈ ℕ0 ) |
| 22 |
21
|
nn0cnd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) ∈ ℂ ) |
| 23 |
7
|
a1i |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → 2 ∈ ℕ0 ) |
| 24 |
23 3
|
nn0mulcld |
⊢ ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℕ0 ) |
| 25 |
24
|
adantr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℕ0 ) |
| 26 |
25
|
nn0cnd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · 𝐶 ) ∈ ℂ ) |
| 27 |
4
|
nn0cnd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
| 28 |
22 26 27
|
subsubd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( ( 2 · 𝐶 ) − 𝐶 ) ) = ( ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( 2 · 𝐶 ) ) + 𝐶 ) ) |
| 29 |
1 6 12
|
mul12d |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 · ( 2 ↑ 𝑌 ) ) ) ) |
| 30 |
|
2cnd |
⊢ ( 𝑌 ∈ ℕ0 → 2 ∈ ℂ ) |
| 31 |
30 11
|
mulcomd |
⊢ ( 𝑌 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑌 ) ) = ( ( 2 ↑ 𝑌 ) · 2 ) ) |
| 32 |
30 9
|
expp1d |
⊢ ( 𝑌 ∈ ℕ0 → ( 2 ↑ ( 𝑌 + 1 ) ) = ( ( 2 ↑ 𝑌 ) · 2 ) ) |
| 33 |
31 32
|
eqtr4d |
⊢ ( 𝑌 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑌 ) ) = ( 2 ↑ ( 𝑌 + 1 ) ) ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( 2 ↑ 𝑌 ) ) = ( 2 ↑ ( 𝑌 + 1 ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 + 𝐶 ) · ( 2 · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) ) |
| 36 |
29 35
|
eqtrd |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) = ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) ) |
| 37 |
|
2txmxeqx |
⊢ ( 𝐶 ∈ ℂ → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) |
| 38 |
14 37
|
syl |
⊢ ( 𝐶 ∈ ℕ0 → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) |
| 39 |
38
|
ad2antlr |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · 𝐶 ) − 𝐶 ) = 𝐶 ) |
| 40 |
36 39
|
oveq12d |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) ) − ( ( 2 · 𝐶 ) − 𝐶 ) ) = ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) − 𝐶 ) ) |
| 41 |
17 28 40
|
3eqtr2d |
⊢ ( ( ( 𝑌 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 2 · ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ 𝑌 ) ) − 𝐶 ) ) + 𝐶 ) = ( ( ( 𝑁 + 𝐶 ) · ( 2 ↑ ( 𝑌 + 1 ) ) ) − 𝐶 ) ) |