Metamath Proof Explorer


Theorem itg10

Description: The zero function has zero integral. (Contributed by Mario Carneiro, 18-Jun-2014)

Ref Expression
Assertion itg10 1×0=0

Proof

Step Hyp Ref Expression
1 i1f0 ×0dom1
2 itg1val ×0dom11×0=xran×00xvol×0-1x
3 1 2 ax-mp 1×0=xran×00xvol×0-1x
4 rnxpss ran×00
5 ssdif0 ran×00ran×00=
6 4 5 mpbi ran×00=
7 6 sumeq1i xran×00xvol×0-1x=xxvol×0-1x
8 sum0 xxvol×0-1x=0
9 3 7 8 3eqtri 1×0=0