Metamath Proof Explorer


Theorem itgmpt

Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Hypothesis itgmpt.1 φxABV
Assertion itgmpt φABdx=AxABydy

Proof

Step Hyp Ref Expression
1 itgmpt.1 φxABV
2 fveq2 y=xxABy=xABx
3 nffvmpt1 _xxABy
4 nfcv _yxABx
5 2 3 4 cbvitg AxABydy=AxABxdx
6 simpr φxAxA
7 eqid xAB=xAB
8 7 fvmpt2 xABVxABx=B
9 6 1 8 syl2anc φxAxABx=B
10 9 itgeq2dv φAxABxdx=ABdx
11 5 10 eqtr2id φABdx=AxABydy