Metamath Proof Explorer


Theorem itgocn

Description: All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Assertion itgocn IntgOverS

Proof

Step Hyp Ref Expression
1 df-itgo IntgOver=a𝒫b|cPolyacb=0coeffcdegc=1
2 1 dmmptss domIntgOver𝒫
3 2 sseli SdomIntgOverS𝒫
4 cnex V
5 4 elpw2 S𝒫S
6 itgoval SIntgOverS=a|bPolySba=0coeffbdegb=1
7 ssrab2 a|bPolySba=0coeffbdegb=1
8 6 7 eqsstrdi SIntgOverS
9 5 8 sylbi S𝒫IntgOverS
10 3 9 syl SdomIntgOverIntgOverS
11 ndmfv ¬SdomIntgOverIntgOverS=
12 0ss
13 11 12 eqsstrdi ¬SdomIntgOverIntgOverS
14 10 13 pm2.61i IntgOverS