Metamath Proof Explorer


Theorem itgresr

Description: The domain of an integral only matters in its intersection with RR . (Contributed by Mario Carneiro, 29-Jun-2014)

Ref Expression
Assertion itgresr ABdx=ABdx

Proof

Step Hyp Ref Expression
1 simpr k03xx
2 1 biantrud k03xxAxAx
3 elin xAxAx
4 2 3 bitr4di k03xxAxA
5 4 anbi1d k03xxA0BikxA0Bik
6 5 ifbid k03xifxA0BikBik0=ifxA0BikBik0
7 6 mpteq2dva k03xifxA0BikBik0=xifxA0BikBik0
8 7 fveq2d k032xifxA0BikBik0=2xifxA0BikBik0
9 8 oveq2d k03ik2xifxA0BikBik0=ik2xifxA0BikBik0
10 9 sumeq2i k=03ik2xifxA0BikBik0=k=03ik2xifxA0BikBik0
11 eqid Bik=Bik
12 11 dfitg ABdx=k=03ik2xifxA0BikBik0
13 11 dfitg ABdx=k=03ik2xifxA0BikBik0
14 10 12 13 3eqtr4i ABdx=ABdx