Metamath Proof Explorer


Theorem itgvol0

Description: If the domani is negligible, the function is integrable and the integral is 0. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgvol0.1 φA
itgvol0.2 φvol*A=0
itgvol0.3 φxAB
Assertion itgvol0 φxAB𝐿1ABdx=0

Proof

Step Hyp Ref Expression
1 itgvol0.1 φA
2 itgvol0.2 φvol*A=0
3 itgvol0.3 φxAB
4 mpt0 xB=
5 iblempty 𝐿1
6 4 5 eqeltri xB𝐿1
7 0ss A
8 7 a1i φA
9 difssd φAA
10 ovolssnul AAAvol*A=0vol*A=0
11 9 1 2 10 syl3anc φvol*A=0
12 8 1 11 3 itgss3 φxB𝐿1xAB𝐿1Bdx=ABdx
13 12 simpld φxB𝐿1xAB𝐿1
14 6 13 mpbii φxAB𝐿1
15 12 simprd φBdx=ABdx
16 itg0 Bdx=0
17 15 16 eqtr3di φABdx=0
18 14 17 jca φxAB𝐿1ABdx=0